INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC 1/SC 29/WG 4 MPEG VIDEO CODING

ISO/IEC JTC 1/SC 29/WG 4 m 66991 April 2024, Rennes

Title:Wedgelet-based block division in geometry features extractionSource:PUT, ETRIAuthors:Błażej Szydełko, Adrian Dziembowski, Dawid Mieloch,
Gwangsoon Lee

Abstract

This document presents a description of the preliminary results of the experiments on enabling the wedgelet division of blocks in encoder-derived features used in DSDE. The results show improvement of the proposal over G65.

1 Proposal

In order to more accurately represent the local features of depth maps, we present an approach based on modelling the geometry with wedgelets.

1.1 Feature extraction algorithm

The first step is common with the current feature extraction approach. Each frame is split into main blocks of maxBlockSize x maxBlockSize. For each block minimum and maximum depth value is found (ZMin, ZMax). When the condition (1) is met, the block is split into two wedges.

$$if ((ZMax - Zmin) < splitThreshold)$$
(1)

Then the block is tested with all combinations of wedgelets. For each part, a ZMin and ZMax are found. Then a costVolume (2) of each part is calculated and summed up. The variant with lowest sum is selected.

$$costVolume = wedgeArea * (ZMax - ZMin + 1)$$
 (2)

Example of wedgelet templates (black region – wedge A, white region – wedge B):

In successive frames, a temporal redundancy is evaluated to use depth information from the previous wedgelet. The basic condition (3) that does not allow the re-use of information from the previous wedge is the extension of the depth range in the current wedge (current and previous block must be splitted with the exact variant):

if(currentWedge.Zmin < previousWedge.Zmin || currentWedge.Zmax > previousWedge.Zmax) noSkip (3)

If the above condition is not met, a skip threshold is used to exploit the similarity of depth values of successive frames in the block. SkipThreshold is defined as a percentage of the possible maximum depth value – MAX_DEPTH_VALUE (for 10 bit 1023). Then a percentage deviation is calculated for ZMin, ZMax, and average SAD for each wedge with respect to MAX_DEPTH_VALUE. A condition is checked:

```
if(ZminCurrPrevPerc >= skipThresh || ZmaxCurrPrevPerc >= skipThresh (4)
|| AvgSADPerc >= skipThresh) noSkip
```

Otherwise, the depth information from the previous wedge can be used.

1.2 Features examples

Extraction parameters:

- maxBlockSize = 32
- splitThreshold = 2562 (16 bit), 64 (10 bit)
- skipThreshold = 2%

Presented examples are in the form of depth maps, which are fed later into IVDE:

Sequence J01, v15, 19th frame:

Min depth values map:

Max depth value map:

Depth skip map:

Estimated depth maps:

DSDE anchor

Proposal

View synthesis

Anchor

Proposal

Sequence D01, v12, 1st frame

Min depth value map:

Max depth value map:

Depth skip map:

Depth estimation

Anchor

Proposal

2 Objective results

3 Acknowledgement

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00207, Immersive Media Research Laboratory).